$\sqrt{x}(\cos x)$ is a product of two functions of *x*.

 $\frac{x^2}{\sin x}$ is a quotient of two functions of *x*.

If you want to differentiate a product or a quotient, you need the product rule or quotient rule.

Product

Note: Although $x^2(1 + x)$ is a product, you do not need a special rule. You just multiply to get a polynomial.

Example: To find $\frac{d}{dx}(\sqrt{x}(\cos x))$

write the two functions as, e.g., u and v: $u = \sqrt{x}$ $v = \cos x$

Apply the product rule: $\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$

e.g. Find
$$\frac{d}{dx}(\sqrt{x}(\cos x))$$

$$u = \frac{du}{dx} =$$
$$v = \frac{dv}{dx} =$$

$$u\frac{dv}{dx} + v\frac{du}{dx} =$$

Quotient

Note: Although $\frac{(6x^2 + 1)}{2x}$ is a quotient, you do not need a special rule. You just divide to get a polynomial.

Example: To find $\frac{d}{dx}\left(\frac{x^2}{\sin x}\right)$

write the two functions as, e.g., u and v: $u = x^2$ $v = \sin x$

Apply the quotient rule:

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)}{v^2}$$

e.g. Find
$$\frac{d}{dx}\left(\frac{x^2}{\sin x}\right)$$

$$u = \frac{du}{dx} =$$
$$v = \frac{dv}{dx} =$$

$$\frac{\left(v\frac{du}{dx} - u\frac{dv}{dx}\right)}{v^2} =$$

Practice:

1. $y = x^{2} \sin x$ 2. $y = e^{x} \cos x$ 3. $y = \frac{(x+3)}{(x-2)}$ 4. $y = 7x \ln(x)$ 5. $y = 3x^{2} \sin 2x$ 6. $y = \frac{\sin x}{3x^{2}}$

Answers:

1.
$$x^{2}\cos x + 2x\sin x$$
 2. $e^{x}(\cos x - \sin x)$ 3. $-\frac{5}{(x-2)^{2}}$
4. $7(1 + \ln x)$ 5. $6x(\sin 2x + x\cos 2x)$ 6. $\frac{x\cos x - 2\sin x}{3x^{3}}$