Differentiation - products and quotients

$\sqrt{x}(\cos x)$ is a product of two functions of x.
$\frac{x^{2}}{\sin x}$ is a quotient of two functions of x.
If you want to differentiate a product or a quotient, you need the product rule or quotient rule.

Product

Note: Although $x^{2}(1+x)$ is a product, you do not need a special rule. You just multiply to get a polynomial.

Example: To find $\frac{d}{d x}(\sqrt{x}(\cos x))$
write the two functions as, e.g., u and $v: \begin{gathered}u=\sqrt{x} \\ v=\cos x\end{gathered}$
Apply the product rule: $\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}$
e.g. Find $\frac{d}{d x}(\sqrt{x}(\cos x))$
$\begin{array}{ll}u= & \frac{d u}{d x}= \\ v= & \frac{d v}{d x}=\end{array}$
$u \frac{d v}{d x}+v \frac{d u}{d x}=$

Quotient

Note: Although $\frac{\left(6 x^{2}+1\right)}{2 x}$ is a quotient, you do not need a special rule.
You just divide to get a polynomial.
Example: To find $\frac{d}{d x}\left(\frac{x^{2}}{\sin x}\right)$
write the two functions as, e.g., u and $v: \begin{gathered}u=x^{2} \\ v=\sin x\end{gathered}$
Apply the quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right)}{v^{2}}
$$

e.g. Find $\frac{d}{d x}\left(\frac{x^{2}}{\sin x}\right)$

$$
\begin{array}{ll}
u= & \frac{d u}{d x}= \\
v= & \frac{d v}{d x}= \\
\frac{\left(v \frac{d u}{d x}-u \frac{d v}{d x}\right)}{v^{2}}= &
\end{array}
$$

Practice:

1. $y=x^{2} \sin x$
2. $y=e^{x} \cos x$
3. $y=\frac{(x+3)}{(x-2)}$
4. $y=7 x \ln (x)$
5. $y=3 x^{2} \sin 2 x$
6. $y=\frac{\sin x}{3 x^{2}}$

Answers:

1. $x^{2} \cos x+2 x \sin x$
2. $e^{x}(\cos x-\sin x)$
3. $-\frac{5}{(x-2)^{2}}$
4. $7(1+\ln x)$
5. $6 x(\sin 2 x+x \cos 2 x)$
6. $\frac{x \cos x-2 \sin x}{3 x^{3}}$
