Turning Points

Sometimes you want to find the maximum or minimum value of a function, for example to:
maximise the volume of a container using a given area of sheet material, minimise the cost of a product which depends on a number of variables.

Differentiation can find maxima and minima.

Example 1

point	gradient $(-\mathrm{ve} / 0 /+\mathrm{ve})$
A	
B	
C	
D	
E	

Points where the function is maximum or minimum are called turning points (or stationary points).

$$
\frac{d y}{d x}=0 \text { at a maximum or minimum. }
$$

$$
\begin{aligned}
& y=x^{3}-2 x^{2} \ldots \frac{d y}{d x}= \\
& \frac{d y}{d x}=0 \ldots \text { so } \ldots
\end{aligned}
$$

$x=$ \qquad or

$$
x=
$$

\qquad
substitute the values of x into the original $y=x^{3}-2 x^{2}$ to find the two values of y :

$$
y=. ~ \quad y=
$$

\qquad

Another possibility where $\frac{d y}{d x}=0$:

Example 2

This turning point is called a point of inflection.

Using the second derivative

If you differentiate $\frac{d y}{d x}$ a second time, you get $\frac{d^{2} y}{d x^{2}}$
('dee-two-y by dee-x-squared')
This is the second derivative of y , which can be written y ".

Example 1	$y=x^{3}-2 x^{2}$ $\frac{d y}{d x}=3 x^{2}-4 x$	when $x=0, \frac{d^{2} y}{d x^{2}}=$
	$\frac{d^{2} y}{d x^{2}}=$	when $x=\frac{4}{3}, \frac{d^{2} y}{d x^{2}}=$
Example 2	$y=x^{3}-3 x^{2}+3 x$ $\frac{d y}{d x}=3 x^{2}-6 x+3$	when $x=1, \frac{d^{2} y}{d x^{2}}=$

if $\frac{d^{2} y}{d x^{2}}>0$	if $\frac{d^{2} y}{d x^{2}}=0$	if $\frac{d^{2} y}{d x^{2}}<0$

