Sometimes you want to find the maximum or minimum value of a function, for example to:

maximise the volume of a container using a given area of sheet material, minimise the cost of a product which depends on a number of variables.

Differentiation can find maxima and minima.

Example 1

Points where the function is maximum or minimum are called **turning points** (or stationary points).

$$\frac{dy}{dx} = 0 \text{ at a maximum or minimum.}$$

$$y = x^{3} - 2x^{2} \dots \frac{dy}{dx} =$$

$$\frac{dy}{dx} = 0 \dots \text{ so } \dots$$

$$x = \dots \text{ or } x = \dots$$

substitute the values of x into the original $y = x^3 - 2x^2$ to find the two values of y:

 $y = \dots$ $y = \dots$

Another possibility where $\frac{dy}{dx} = 0$: Example 2 $y \neq x^3 - 3x^2 + 3x$ $y = x^3 - 3x^2 + 3x$ $\frac{dy}{dx} =$ $\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 0$ $\frac{dy}{d$

This turning point is called a **point of inflection**.

Using the second derivative

If you differentiate $\frac{dy}{dx}$ a second time, you get $\frac{d^2 y}{dx^2}$ ('dee-two-y by dee-x-squared')

This is the second derivative of y, which can be written y".

Example 1	$y = x^{3} - 2x^{2}$ $\frac{dy}{dx} = 3x^{2} - 4x$ $\frac{d^{2}y}{dx^{2}} =$	when $x=0$, $\frac{d^2 y}{dx^2} =$ when $x=\frac{4}{3}$, $\frac{d^2 y}{dx^2} =$
Example 2	$y = x^{3} - 3x^{2} + 3x$ $\frac{dy}{dx} = 3x^{2} - 6x + 3$ $\frac{d^{2}y}{dx^{2}} =$	when $x=1$, $\frac{d^2 y}{dx^2} =$

$\inf \frac{d^2 y}{dx^2} > 0$	$\text{if } \frac{d^2 y}{dx^2} = 0$	$\inf \frac{d^2 y}{dx^2} < 0$