The table shows the activity, *A*, of a sample of the radioactive isotope ¹¹²Ag over a period of 5 hours.

The activity, *A*, of the source after time *t* is given by: $A = A_0 e^{-kt}$,

where A_0 is the initial activity, k is a constant.

- (a) Complete the column of ln(*A*) (to 2 decimal places).
- (b) Plot a graph of ln(*A*) against *t*.
- (c) Measure the gradient of the graph, *k*.
- (d) By finding ln(½ initial activity), read the half life of ¹¹²Ag from the graph.

time (hr)	A (per minute)	ln(A)
0	405	
1	328	
2	263	
3	211	
4	169	
5	135	

Answer: k = -0.22, t = 3.2 hrs

2. A vacuum pump reduces the pressure of air in a tank.

The pressure, *p*, in kPa, after time *t*, in seconds, is given by: $p = 100 e^{-0.015t}$

Calculate the pressure in the tank after 20 seconds.

- 3. A capacitor is being charged to produce a large pulse of current. The charge, Q, in coulombs, on the capacitor after *t* seconds is given by $Q = 500(1 - e^{-0.02t})$
 - (a) Calculate the charge on the capacitor after 25 seconds.
 - (b) Find the final charge on the capacitor after a long charging time.
 - (c) Write the equation with Q equal to half the final charge and simplify.
 - (d) Take logs to the base *e* to find the time taken to charge the capacitor to half its final value.

Answers: 2: 74 kPa 3: 197 C, 35 s