Using a calculator with logs

Use your calculator to find the following (write 3 significant figures):

$\log (1)$	$\log \left(10^{-2}\right)$	$\log (\sqrt{10})$
$\log (2)$	$\log \left(2^{2}\right)$	$\log \left(2^{3}\right)$
$\log (2 \times 2)$	$\log (\sqrt{2})$	$\log \left(2^{(1 / 3)}\right)$
$\log (4)$	$\log \left(4^{1 / 2}\right)$	$\log \left(4^{1 / 6}\right)$

e^{1}	e^{2}	e^{-2}
$\ln (1)$	$\ln (10)$	$\ln (100)$
$\ln (e)$	$\ln (\sqrt{e})$	$\ln \left(e^{e}\right)$

(The last two questions are not about using a calculator)
Write these equations using powers, e.g. $\log _{3} 81=4 \rightarrow 3^{4}=81$

$$
\log _{7} 7=1 \quad \log _{3} 1=0 \quad \log _{4}\left(\frac{1}{64}\right)=-3
$$

Write these equations using logs, e.g. $8^{2}=64 \rightarrow \log _{8} 64=2$

$$
10^{3}=1000 \quad 4^{-2}=\frac{1}{16} \quad x^{z}=y
$$

