Solving simultaneous equations

Simultaneous equations are where you have two unknowns (e.g. x, y) and two equations linking them.
You can solve them graphically, or algebraically (2 methods).

Method 1 - Elimination

1. Make a variable (x or y) have the same number in both equations by multiplying one or both (if necessary)
2. Add/subtract equations to eliminate one variable.
3. Substitute back into the simpler original equation to find the other.

Example 1

$$
\left.\begin{array}{l}
2 x+3 y=17 \\
4 x+3 y=19
\end{array}\right]
$$

These have same number of y, so subtract: [1] - [2]

$$
x=
$$

substitute into (1)

$$
y=
$$

\qquad

Example 2

$$
\begin{align*}
7 x-2 y & =17 \tag{1}\\
6 y & =5 x-3 \\
21 x-6 y & =51 \tag{2}
\end{align*}
$$

multiply [1] by 3 to make $6 y$:
add [2] and [1A] to cancel $6 y$:
\qquad
\qquad

$$
x=
$$

\qquad
substitute into [1]:
\qquad

Example 3

$$
\left.\begin{array}{l}
12 x-2 y=34 \\
3 y-11 x=-23
\end{array}\right][1] \quad[2]
$$

small number of y in both, so make them the same by:
[1] $\times 3$
[2] $\times 2$
add to eliminate y : \qquad
\qquad

$$
x=
$$

\qquad
substitute in [1] \qquad
\qquad
\qquad

$$
y=
$$

\qquad

Method 2 - Substitution

1. Use when numbers are more complicated
2. From one equation find x in terms of y or y in terms of x.
3. Substitute into the other equation.

$$
\left.\begin{array}{l}
0.7 x-0.9 y=3.2 \\
1.3 y-0.5 x=1.0
\end{array}\right][1]
$$

Simplest value is $0.5 x$, so rearrange [2] to get x :

$$
x=
$$

\qquad
substitute into [1]:

$$
\begin{aligned}
& y= \\
& x=
\end{aligned}
$$

