Simultaneous equations are where you have two unknowns (e.g. x, y) and two equations linking them.

You can solve them graphically, or algebraically (2 methods).

Method 1 – Elimination

- 1. Make a variable (x or y) have the same number in both equations by multiplying one or both (if necessary)
- 2. Add/subtract equations to eliminate one variable.
- 3. Substitute back into the simpler original equation to find the other.

Example 1

	2x + 3y = 17 [1] 4x + 3y = 19 [2]
These have same number of y, so subtract: [1] – [2]	
substitute into (1)	x =
	<i>y</i> =
Example 2	7x - 2y = 17 [1] 6y = 5x - 3 [2]
multiply [1] by 3 to make 6 <i>y</i> :	
add [2] and [1A] to cancel 6y:	21x - 6y = 51[1A]
	$21x = \dots$
	$16x = \dots$
substitute into [1]:	$x = \dots$

Example 3

12x - 2y = 34	[1]
3y - 11x = -23	[2]

small number of *y* in both, so make them the same by:

[1] x 3	
[2] x 2	
add to eliminate <i>y</i> :	
	<i>x</i> =
substitute in [1]	
	<i>y</i> =

Method 2 – Substitution

- 1. Use when numbers are more complicated
- 2. From one equation find x in terms of y or y in terms of x.
- 3. Substitute into the other equation.

Simplest value is 0.5*x*, so rearrange [2] to get *x*:

0.7x - 0.9y = 3.2	[1]
1.3y - 0.5x = 1.0	[2]
-	

 $x = \dots$

substitute into [1]: