Work, Energy and Power - Practice

1. Calculate the time taken by a water pump with output, with power 500 W to lift 2000 kg of water to a tank, which is at a height of 15 m from the ground. (588s)
2. A cyclist is cycling at steady speed of $5.0 \mathrm{~m} / \mathrm{s}$ and developing an average power of 300 W . Calculate the total resistive force. (60 N)
3. An electric motor has a supply of 12 V and draws a current of 1.5 A .

The motor lifts a 2.0 kg mass a height of 1.0 m in 2.5 s .
Calculate the efficiency of the motor. (Electrical power, $P=V \times I$) (0.44)
4. Two people push a car of mass 1000 kg , one at each rear corner.

Each exerts a force of 120 N at an angle of 20° to the direction of motion.
(a) Calculate the work done by the two people in pushing the car 30 m (6.7 kJ)
(b) The resistance to motion is 100 N .

Calculate the speed of the car, if it starts from rest. ($2.7 \mathrm{~m} / \mathrm{s}$)
5. On a demolition site there is a heavy steel demolition ball, mass 500 kg , on a chain, length 20 m to the centre of mass. It is pulled aside to an angle of 30°.
(a) Calculate:
(i) the vertical height, h, of the support above the centre of the ball, (17.3 m)
(ii) the increase in gravitational potential energy of the ball. $\left(1.3 \times 10^{4} \mathrm{~J}\right)$
(b) The ball is released and hits a wall when the chain is
 vertical.
Calculate the speed of impact. ($7.2 \mathrm{~m} / \mathrm{s}$)
6. $5 \times 10^{5} \mathrm{~kg}$ of water flows over a 60 m high waterfall every second.
30% of the energy of the falling water can be turned into electricity.
Calculate the power available. $\left(8.8 \times 10^{7} \mathrm{~W}\right)$
7. A train of mass $5 \times 10^{5} \mathrm{~kg}$ is travelling at a speed of $30 \mathrm{~m} / \mathrm{s}$ up a slope of 1 in 100 .

The frictional resistance is 50 N per tonne.
Calculate the output power of the engine. (2.2MW)
8. Water in a reservoir with vertical sides has a surface area of $2.0 \times 10^{5} \mathrm{~m}^{2}$ and is 6.0 m deep. Its surface is 65.0 m vertically above a hydroelectric turbine/generator. density of water $=1000 \mathrm{kgm}^{-3}$.
Calculate:
(a) the average height of the water above the turbine,
(b) the volume of water in the reservoir, $\left(1.2 \times 10^{6} \mathrm{~m}^{3}\right)$
(c) the mass of water in the reservoir, $\left(1.2 \times 10^{9} \mathrm{~kg}\right)$

(d) the maximum potential energy available from the water. $\left(7.3 \times 10^{11} \mathrm{~J}\right)$
9. A car, mass 1000 kg , is traveling at $20 \mathrm{~m} / \mathrm{s}$.

The brakes can give a force of 3500 N . Calculate:
(a) the kinetic energy of the car just before it brakes, (200 kJ)
(b) the distance the car travels during braking to a stop, (57 m)
(c) the time it takes the car to stop. (5.7 s)

10 A piano, mass 250 kg , is lifted using a diesel engine from the ground to a window 9.0 m above the ground. The output power of the engine is 700 W .

Calculate:
(a) the time taken to raise the piano to the window. (31.5 s)
(b) the amount of chemical energy converted by the engine, if its efficiency is 18%. $\left(1.2 \times 10^{5} \mathrm{~J}\right)$
11. A car of mass 1000 kg , travelling at $12 \mathrm{~m} / \mathrm{s}$ up a slope inclined at 15° above the horizontal, stops in a distance of 25 m .
Calculate the frictional force which must be acting. (344N)
12. A box, mass 4.0 kg , slides from rest a distance of 5.0 m down a ramp at an angle of 37°, as shown.
Assume that the frictional force is constant.
At the bottom of the ramp it is moving at $7.0 \mathrm{~m} / \mathrm{s}$.
Calculate:
(a) the weight of the box; (39 N)
(b) the potential energy lost by the box; (118 J)

(c) the kinetic energy gained by the box; $(98 \mathrm{~J})$
(d) the work done against friction; (20 J)
(e) the size of the frictional force. (4.0 N)

