Friction - Practice

1. A skater of mass 50 kg is sliding at $9.9 \mathrm{~m} / \mathrm{s}$ over smooth ice. coefficient of friction $=0.05$
Calculate:
(i) the frictional force opposing the motion, (24.5 N)
(ii) the time it will take for the speed to be reduced to $5.0 \mathrm{~m} / \mathrm{s}$. (10 s)
2. A block of mass 10 kg is at rest on a polished surface. When a horizontal force of 19.8 N is applied, the block accelerates at $1.0 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the coefficient of friction between the block and the surface. (0.1)
3. A box rests on rough ground.

The coefficient of friction between the box and the ground is 0.8 .
A horizontal force of 20 N applied to the box gives an acceleration of $2.16 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the mass of the box. (2.0 kg)
4. An object of mass m rests on rough horizontal ground with coefficient of friction μ. A force of 4.9 N is just enough to start the object moving.
A force of 6.9 N gives it an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate m and μ. $1.0 \mathrm{~kg}, 0.5$)
5. A car of mass 1000 kg , travelling at $100 \mathrm{~km} / \mathrm{hr}$ travels 60 m coming to a halt in an emergency stop once the brakes are applied.
The car decelerates at a constant rate because of the friction of its tyres on the road.
Calculate the coefficient of friction. (0.66)

