Friction \& Air Resistance - Tutorial

1. Mass $A(2 \mathrm{~kg})$ and mass $B(3 \mathrm{~kg})$ are joined by a light inextensible string which passes over a smooth pulley fixed at the edge of a smooth horizontal table.
Initially, A is held at rest on the table while B hangs freely over the side of the table.
The coefficient of friction between the table and
 mass $A=0.5$.
By applying Newton's second law to A and to B, calculate:
(a) the acceleration which occurs when the system is released. $\left(3.92 \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) the tension in the string. (17.6 N)
2. A stone block of mass 2400 kg is to be pulled up an inclined plane of at 40° to the horizontal by a steel cable over a pulley as shown. coefficient of friction between stone and plane = 0.59 .

Calculate:
(a) the mass m_{a} required to prevent the block from sliding down the plane. (458 kg)

(b) the larger mass m_{b} required to pull the stone 15 m up the plane in 10 s . (2700 kg)
3. A 68 kg skydiver jumps out of an aeroplane.
density of air $=1.2 \mathrm{~kg} / \mathrm{m}^{3}$
area of skydiver $=0.7 \mathrm{~m}^{2}$ (before opening chute) $=30 \mathrm{~m}^{2}$ (chute open)
drag coefficient $=0.45$ (before opening chute) $=1.5$ (chute open)
(a) Before the parachute is opened, calculate the skydiver's
(i) acceleration when falling at $20 \mathrm{~m} / \mathrm{s}\left(8.7 \mathrm{~m} / \mathrm{s}^{2}\right)$
(ii) acceleration when falling at $40 \mathrm{~m} / \mathrm{s}\left(5.4 \mathrm{~m} / \mathrm{s}^{2}\right)$
(iii) terminal velocity ($59.4 \mathrm{~m} / \mathrm{s}$)
(b) The parachute is opened when falling at terminal velocity. Calculate the acceleration when the parachute is opened at this speed. ($1390 \mathrm{~m} / \mathrm{s}^{2}$)
4. A table tennis ball is released from the bottom of a swimming pool, and rises to the surface under the influence of a buoyancy force which, according to Archimedes' principle, is equal to the weight of displaced water. ball radius $=20 \mathrm{~mm}$, ball mass $=2.7 \mathrm{~g}$; density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ drag coefficient $=0.5$
Calculate the terminal velocity reached. ($0.96 \mathrm{~m} / \mathrm{s}$)

