Impulse \& Momentum - 1 - Tutorial

1. A free-running vehicle \mathbf{A}, mass 0.20 kg , travelling to the right at $0.80 \mathrm{~m} / \mathrm{s}$, hits a vehicle B, mass 0.60 kg , which is stationary.
After impact, A bounces back with a speed of $0.40 \mathrm{~m} / \mathrm{s}$.
(a) Calculate the change of momentum of \mathbf{A}. ($0.24 \mathrm{kgm} / \mathrm{s}$)
(b) Calculate the speed and direction of \mathbf{B} after the collision. ($0.40 \mathrm{~m} / \mathrm{s}, R$)
(c) Show whether the collision is elastic. (Yes, ke before \& after $=0.064 \mathrm{~J}$)
2. A free-running trolley \mathbf{A}, mass 0.80 kg , travelling to the right at $0.30 \mathrm{~m} / \mathrm{s}$ collides with a second free-running trolley \mathbf{B}, mass 0.40 kg , initially stationary. After the collision, trolley A moves to the right at $0.10 \mathrm{~m} / \mathrm{s}$.
(a) Calculate the velocity of trolley \mathbf{B} after the collision. ($0.40 \mathrm{~m} / \mathrm{s}$)
(b) Show that the collision is elastic.
3. An empty truck of mass M rolls along a track with speed $3.0 \mathrm{~m} / \mathrm{s}$ and hits a stationary truck of the same mass, which is loaded with 2000 kg of coal. After the impact, the two trucks couple together and move off with the same speed of $1.0 \mathrm{~m} / \mathrm{s}$. Calculate M. (2000 kg)
4. Particles A, B and C, of masses $100 \mathrm{~g}, 200 \mathrm{~g}$ and 400 g respectively, are initially all at rest in a straight line $A B C$ on a smooth table with $\mathbf{A B}=0.20 \mathrm{~m}$ and $B C=0.20 \mathrm{~m}$.
(a) \mathbf{A} is now set moving with speed $0.30 \mathrm{~m} / \mathrm{s}$ towards \mathbf{B}.

After A collides with B, B moves off towards \mathbf{C} with speed $0.20 \mathrm{~m} / \mathrm{s}$. Calculate the new speed of $\mathbf{A} .(-0.1 \mathrm{~m} / \mathrm{s})$
(b) After B hits \mathbf{C}, \mathbf{C} moves off with speed $0.10 \mathrm{~m} / \mathrm{s}$.

Calculate the new speed of B. $(0 \mathrm{~m} / \mathrm{s})$
(c) Determine whether there will be any more collisions.
(A \& C moving in opposite directions, B at rest, so 'no')

