## Impulse \& Momentum - 2 - Practice

1. The diagram illustrate collisions between smooth spheres with identical radii.

Calculate $e$, the coefficient of restitution between each pair of spheres. (0.5)

before impact

after impact
2. A 5.0 kg mass moving at $6.0 \mathrm{~m} / \mathrm{s}$ makes a head-on collision with a 4.0 kg mass travelling at $3.0 \mathrm{~m} / \mathrm{s}$ in the opposite direction.
coefficient of restitution, $e=0.5$
Calculate the velocities of the two masses after impact. ( $0 \mathrm{~m} / \mathrm{s}, 4.5 \mathrm{~m} / \mathrm{s}$ )
3. Two smooth spheres $A$ and $B$, of different mass, are travelling towards each other.

A has a speed of $0.10 \mathrm{~m} / \mathrm{s}$ to the right.
$B$ has a speed of $0.40 \mathrm{~m} / \mathrm{s}$ to the left.
After impact, the A travels at $0.20 \mathrm{~m} / \mathrm{s}$ to the left.

before impact

after impact

The coefficient of restitution of the collision is 0.60 .
Calculate
(i) the speed of B after the impact. ( $0.10 \mathrm{~m} / \mathrm{s}$ )
(ii) the ratio: (mass of $A$ )/(mass of B). (5/3)
(hint: you are trying to rearrange to equations to find $m_{A} / m_{B}$ )

