Impulse \& Momentum - 3 - Tutorial

1. A German V-2 rocket of the $1939-45$ war had a mass of 4000 kg with a further 8000 kg of fuel.
Fuel was burnt at a rate of 135 kg per second and the combustion products were ejected backwards at a speed of $2000 \mathrm{~m} / \mathrm{s}$ relative to the rocket.

Calculate:
(i) the resultant force acting on the rocket, (270 kN)
(ii) the initial acceleration when launched. $\left(22.5 \mathrm{~m} / \mathrm{s}^{2}\right)$
2. The graph shows the force exerted on a car driver, mass 80 kg , by the seat belt during a crash.

The area under a force-time graph gives the change of momentum ($\mathrm{F} \Delta \mathrm{t}=\Delta \mathrm{mv}$), just as the area under a velocity-time graph gives displacement. $(v \Delta t=\Delta s)$

Estimate:

(i) the change of momentum of the driver, ($2000 \mathrm{kgm} / \mathrm{s}$)
(ii) the speed of the car before the crash. ($25 \mathrm{~m} / \mathrm{s}$)
3. Calculate the acceleration of a 5000 kg rocket taking off from the surface of the Moon, where the acceleration due to gravity is $1.6 \mathrm{~m} / \mathrm{s}^{2}$, if the rocket expels 8.00 kg of gas per second at an exhaust velocity of $2.20 \times 10^{3} \mathrm{~m} / \mathrm{s} .\left(1.92 \mathrm{~m} / \mathrm{s}^{2}\right)$

