Equations of motion - Practice

1. The driver of a car, travelling at $30 \mathrm{~m} / \mathrm{s}$, sees a hazard in the distance and applies the brakes for 1.5 s producing a deceleration of $8.0 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the distance that car travels during the deceleration. (36m)
2. A ball is thrown vertically into the air with an initial speed of $12 \mathrm{~m} / \mathrm{s}$. Calculate:
(a) the time it takes to reach its highest point, (1.22 s)
(b) the maximum height above the point of release that it reaches. (7.3 m)
3. A cyclist is travelling at $4.0 \mathrm{~m} / \mathrm{s}$ and accelerates to $10.0 \mathrm{~m} / \mathrm{s}$ in a time of 5.0 s .

Calculate:
(a) the average acceleration, $\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) the distance travelled while accelerating. (35 m)
4. A car is measured by a radar speed detector to be travelling at $15 \mathrm{~m} / \mathrm{s}$ at one point and $40 \mathrm{~m} / \mathrm{s}$ at a point 350 m down the road.
Calculate:
(a) the average acceleration, $\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) the time taken to travel the 350 m . $(12.7 \mathrm{~s})$
5. A fountain projects water vertically to a height of 5.0 m . Calculate the minimum velocity with which the water must leave the fountain nozzle. ($9.9 \mathrm{~m} / \mathrm{s}$)
6. An object is thrown vertically upwards with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from a height h above the ground. It hits the ground 5.0 s later. Calculate $h .(22.5 \mathrm{~m})$
7. A ball is thrown vertically upwards with an initial velocity of $25 \mathrm{~m} / \mathrm{s}$ from the base of a 15 m cliff.
Neglect air resistance and the small horizontal motion.

Calculate:

(a) the height, h, by which the ball clears the top of the cliff, (17m)
(b) the time after release at which the ball lands at B, (4.4 s)
(c) the impact velocity at B. $(18 \mathrm{~m} / \mathrm{s})$

