Equations of motion - Tutorial

1. An object is thrown vertically upwards with a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ and, at the same time, a second object is thrown vertically downwards at a speed of $2.0 \mathrm{~m} / \mathrm{s}$.
Calculate the distance apart of the objects after 0.5 s . (2.5 m)
2. An American baseball player starts from rest and runs to first base 27 m away. He accelerates uniformly over the first 3.0 m to maximum speed, which he maintains until he crosses first base. The total run is completed in 4.0 s .

Calculate:
(a) the maximum speed, $(7.5 \mathrm{~m} / \mathrm{s})$
(b) the acceleration during the first $3.0 \mathrm{~m},\left(9.4 \mathrm{~m} / \mathrm{s}^{2}\right)$
(c) the time during which this acceleration occurs. (0.8 s)
3. A car is driven 3.0 km between points A and D.

Between A and B it travels at a steady $100 \mathrm{~km} / \mathrm{h}$ for t seconds.

Between B and C it decelerates uniformly for 4.0s.
Between C and D it travels at a steady $60 \mathrm{~km} / \mathrm{h}$ for t seconds.
Calculate:
(a) the time t, (65.5 s)
(b) the distance, s, between A and B. (1.8 km)
4. Ball 1 is launched with an initial vertical velocity, v_{1}, of $50 \mathrm{~m} / \mathrm{s}$. Three seconds later, ball 2 is launched with an initial vertical velocity of v_{2}.
Neglect air resistance.
(a) Calculate v_{2} if the balls are to collide at a height of $90 \mathrm{~m} .(42 \mathrm{~m} / \mathrm{s})$
(b) At the instant of collision, is ball 1 ascending or
 descending? (descending)

