Motion graphs - Practice

1. The table shows data for standing-start acceleration for a car.

$t(\mathrm{~s})$	0	5	10	15	20	25	30	35	40
$v(\mathrm{~m} / \mathrm{s})$	0	14	24	30	34	37	39	40	40

(a) Plot the velocity-time graph on the grid at the right.
(b) Use the graph to calculate:
(i) the displacement of the car when it has reached a speed of $25 \mathrm{~m} / \mathrm{s}$
(ii) the acceleration of the car when its speed is $30 \mathrm{~m} / \mathrm{s}$
(iii) the maximum acceleration of the car
($150 \mathrm{~m}, 0.96 \mathrm{~m} / \mathrm{s}^{2}, 3.0 \mathrm{~m} / \mathrm{s}^{2}$)

2. The graph shows how the displacement of a particle varies with time.

Calculate:
(a) the average velocity during the 8 s ,
(b) the instantaneous velocity when $t=4 \mathrm{~s}$.
$(-0.75 \mathrm{~m} / \mathrm{s},-1.25 \mathrm{~m} / \mathrm{s})$
3. The graph shows how the velocity of a particle varies with time.

Calculate:

(a) the displacement during the 8 s ,
(b) the average acceleration during the 8 s ,
(b) the acceleration at time $t=4 \mathrm{~s}$.
($64 \mathrm{~m}, 1.0 \mathrm{~m} / \mathrm{s}^{2}, 1.5 \mathrm{~m} / \mathrm{s}^{2}$)

