Motion graphs – Practice

The table chewe data for standing start deceleration for a car.									
<i>t</i> (s)	0	5	10	15	20	25	30	35	40
<i>v (</i> m/s)	0	14	24	30	34	37	39	40	40

- 1. The table shows data for standing-start acceleration for a car.
 - (a) Plot the velocity-time graph on the grid at the right.
 - (b) Use the graph to calculate:
 - (i) the displacement of the car when it has reached a speed of 25 m/s
 - (ii) the acceleration of the car when its speed is 30 m/s
 - (iii) the maximum acceleration of the car

2. The graph shows how the displacement of a particle varies with time.

Calculate:

- (a) the average velocity during the 8 s,
- (b) the instantaneous velocity when t = 4 s.

(-0.75 m/s, -1.25 m/s)

3. The graph shows how the velocity of a particle varies with time.

Calculate:

- (a) the displacement during the 8 s,
- (b) the average acceleration during the 8 s,
- (b) the acceleration at time t = 4 s.

(64 m, 1.0 m/s², 1.5 m/s²)

