Newton's Laws - 1 - Practice

1. A snooker ball, mass 200 g , travelling at $0.10 \mathrm{~m} / \mathrm{s}$ has a frictional force of $5.0 \times 10^{-3} \mathrm{~N}$ acting on it. Calculate:
(a) the deceleration that this force produces, $\left(2.5 \times 10^{-2} \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) the distance the ball travels before stopping. (0.20 m)
2. A tractor pulls a log of mass 2000 kg . When the tractor pulls with a force of 1300 N , the acceleration of the \log is $0.050 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the frictional force between the log and the ground. (1200N)
3. A car, mass 800 kg , accelerates from rest to $8.0 \mathrm{~m} / \mathrm{s}$ in a time of 30 s .

Calculate the average resultant force acting on the car. (210 N)
4. Two people push a car of mass 800 kg to start it. Each pushes with a force of 300 N and the total resistance force is 160 N .
Calculate the acceleration of the car? $\left(0.55 \mathrm{~m} / \mathrm{s}^{2}\right)$
5. A man, of mass 80 kg , goes up in a lift while standing on a set of bathroom scales.

The scales register an apparent mass of 88 kg .
Calculate the acceleration of the lift. $\left(0.98 \mathrm{~m} / \mathrm{s}^{2}\right)$
6. The A380 AirBus is powered by four engines, each of which develops a maximum thrust of 311 kN .
(a) The maximum take-off mass of an A380 is $5.6 \times 10^{5} \mathrm{~kg}$. Calculate the maximum horizontal acceleration of the AirBus at take-off under full engine power and full load. ($2.2 \mathrm{~m} / \mathrm{s}^{2}$)
(b) An A380 which is operating empty
 (except for fuel) has a mass of $2.77 \times 10^{5} \mathrm{~kg}$. Calculate:
(i) the lift force which has to be produced by the wings to just support the weight of this plane when it is flying. (2710kN)
(ii) the extra lift force need to give the plane a vertical acceleration of $0.5 \mathrm{~m} / \mathrm{s}^{2} .(139 \mathrm{kN})$

