Newton's Laws - 1 - Tutorial

1. Three spies, Delta, mass 90 kg , Echo, mass 80 kg . and Foxtrot are on board a hot air balloon, whose mass, including the basket, is 110 kg . The balloon is floating in equilibrium when, after a struggle, Delta and Echo eject Foxtrot from the basket. The balloon begins to accelerate upwards at, a rate of $2.1 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the mass of spy Foxtrot. (60 kg)
2. A jet airliner, mass 300 tonnes, has three engines, each of which produces a nearly constant thrust of 240 kN during takeoff.
The takeoff speed is $220 \mathrm{~km} / \mathrm{hr}$.
The runway is inclined at an angle of 0.5°.
Neglect air and running resistance.

Calculate the minimum length of runway required for:
(i) an uphill takeoff (as shown in the diagram), (807 m)
(ii) a downhill takeoff (in the opposite direction). (751 m)
3. A car driver, mass 90 kg , puts his foot down on the accelerator. The car has a mass of 1110 kg and the driving force supplied by the engine is 2.4 kN .
(a) Calculate the acceleration of the car. (Allow for the mass of the driver, who is inside the car). $\left(2.0 \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) 100 m further down the road, the car reaches a speed of $100 \mathrm{~km} / \mathrm{hr}$. Calculate the initial speed. ($19 \mathrm{~m} / \mathrm{s}$)
(c) Calculate the forward force (horizontal) exerted on the driver by the car seat while the car maintains this acceleration. (180 N)

