Newton's Laws - 2 - Practice

1. The engine of a car produces a driving force of 1800 N . The car has a mass of 1200 kg (including driver) and pulls a trailer of mass 600 kg .
The resistive force on the car is 200 N . The resistive force on the trailer is 100 N . Calculate the acceleration and the tension in the tow-bar. $\left(0.83 \mathrm{~m} / \mathrm{s}^{2}, 600 \mathrm{~N}\right)$
2. Particle B, mass 10 kg , is joined to to particle C, mass 9 kg , by a light string which passes over a smooth, light pulley. The particles are released from rest with the string taut. Calculate the acceleration of the masses and the tension in the string. ($0.52 \mathrm{~m} / \mathrm{s}^{2}, 93 \mathrm{~N}$)

3. A trolley A (3kg) and mass B (2 kg) are joined by a light string which passes over a smooth pulley fixed at the edge of a horizontal table.
Initially, A is held at rest on the table while B hangs freely over the side.
(a) Calculate the acceleration which the system
 will have when mass A is released. $\left(3.93 \mathrm{~m} / \mathrm{s}^{2}\right)$
(b) Calculate the tension in the string. (11.8 N)
(c) Mass B is replaced by mass C. The acceleration is now $4.9 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate the mass of C . (3 kg)
4. Particles P and Q are joined by a string passing over a pulley. P has a mass of $11 \mathrm{~kg} . P$ is accelerating downwards at $2.2 \mathrm{~m} / \mathrm{s}^{2}$.

Calculate:
(i) the tension in the string, $(84 \mathrm{~N})$
(ii) the mass of particle Q. (7.0kg)

