Newton's Laws - 2 - Tutorial

1. A stationary helicopter is raising two people of masses 90 kg and 70 kg as shown. The force applied to the 90 kg person is 1800 N .

Calculate:
(i) the acceleration of both people, $\left(1.45 \mathrm{~m} / \mathrm{s}^{2}\right)$
(ii) the tension, T, in the lower rope. (788 N)

2. A car of mass 1000 kg tows a caravan of mass 750 kg along a horizontal road. The engine of the car exerts a forward force of 2500 N . The resistances to the motion of the car and caravan are each $k \times$ their masses, where k is a constant. The car accelerates at $1.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the tension in the tow-bar. (1.07 kN)
3. A car, mass 1400 kg , is pulling a trailer, mass 200 kg , and accelerating at $0.6 \mathrm{~m} / \mathrm{s}^{2}$.
(a) Calculate the tractive force of the engine. (960 N)
(b) A load L is placed in the trailer, which reduces the acceleration to $0.48 \mathrm{~m} / \mathrm{s}^{2}$. Assuming the tractive force remains the same, calculate the mass of L . (400 kg)
(c) The load is removed but, because the trailer has an under-inflated tyre, there is a drag force on the trailer of 160 N . Calculate the acceleration of the car now (assuming the same tractive force as before). ($0.5 \mathrm{~m} / \mathrm{s}^{2}$)
4. A box, of mass 1.2 kg , is sliding along a rough horizontal table. It is connected by a light string
 passing over a smooth pulley, to another box of mass 1.2 kg , as shown.
The force of friction between the table and the box is 5.2 N .

Calculate:
(i) the acceleration of each box, $\left(2.7 \mathrm{~m} / \mathrm{s}^{2}\right)$
(ii) the tension in the string. $(8.5 \mathrm{~N})$
5. A car, of mass 450 kg , is on a slope which is inclined at 45° to the horizontal. It is attached, using a light string passing over a smooth light pulley, to a box of mass 400 kg , which is accelerating downwards.
A resistive force of 450 N acts on the car.
Calculate:
(i) the acceleration of the car, $\left(0.41 \mathrm{~m} / \mathrm{s}^{2}\right)$
(ii) the tension in the string. (3.8 kN)

