Projectiles - Tutorial

You can ignore the effect of air resistance in all these questions. You can assume that the ground is level and horizontal.

1. A footballer kicks a ball at $25 \mathrm{~m} / \mathrm{s}$ (with no spin) from the ground at 60° to the horizontal. Calculate:
(a) the time that the ball in the air, (4.4 s)
(b) the distance away from the footballer that the ball lands. (55 m)
2. A cannon fires a cannonball at 45° to the horizontal. It hits the ground 500 m away. Calculate the velocity with which the cannonball left the cannon. ($70 \mathrm{~m} / \mathrm{s}$)
3. An arrow is shot from the top of a building 42 m high. The arrow is shot at $25 \mathrm{~m} / \mathrm{s}$ at an angle of 30° above the horizontal. Calculate:
(a) the time for the arrow to reach its maximum height, (1.27 s)
(b) the maximum height above the ground that the arrow reaches, (50 m)
(c) the time for the arrow to fall from maximum height to the ground again, (3.2 s)
(d) the horizontal distance from the building that the arrow lands. (97m)
4. A football is kicked at 37° above the horizontal at $20 \mathrm{~m} / \mathrm{s}$ from the player's hand, which is 1.0 m above the ground.
Calculate the horizontal distance travelled by the football before hitting the ground.
(hint use the method of the previous question) (40.5m)
5. A car rolls of a cliff, 60 m above the sea, at an angle of 30° below the horizontal at a speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate:
(a) the time taken for the car to hit the sea, (3.02 s)
(hint: you will need to solve a quadratic equation)
(b) the distance from the cliff that the car hits the sea. (26 m)

At a fairground challenge, a stone is thrown at an angle of 40° above the horizontal into a bucket 2.5 m away and 0.80 m above the hand of the thrower.
Calculate the speed with which the stone must be thrown to go into the bucket.

(hint: write equations for the horizontal and vertical motions and solve them to eliminate t) ($6.3 \mathrm{~m} / \mathrm{s}$)

