Relative velocities - Tutorial

1. With a tail wind a jet aircraft arrives at its destination 1890 miles away, in 3 hours exactly. Flying against the same wind at the same speed, the plane makes the return trip in 3hrs 22mins. (hint: work in miles and hours)

Calculate the wind speed and the plane's airspeed. (34.3mph, 596mph)
2. A vintage aeroplane, whose air-speed is $60 \mathrm{~m} / \mathrm{s}$ is flying in an easterly gale of $45 \mathrm{~m} / \mathrm{s}$. ('easterly' means 'from the east')
(a) Calculate the plane's ground speed and bearing:
(i) when the pilot keeps it heading east, $\left(15 \mathrm{~m} / \mathrm{s}, 90^{\circ}\right)$
(ii) when the pilot keeps it heading north.
('heading north' means that the plane's nose is pointing north, even though the plane itself does not travel north) ($75 \mathrm{~m} / \mathrm{s}, 323^{\circ}$)
(b) When the plane travels due north, calculate:
(i) the plane's ground speed,
(ii) the plane's heading. $\left(40 \mathrm{~m} / \mathrm{s}, 49^{\circ}\right)$
3. A boat travels at $3.0 \mathrm{~m} / \mathrm{s}$. It is crossing a river, 100 m wide, flowing $1.5 \mathrm{~m} / \mathrm{s}$ from West to East. The boat starts at point P and needs to land at point R, 40m upstream from point Q, which is directly opposite P.

Calculate the bearing that the boat must steer. $\left(311^{\circ}\right)$
(hint: draw a diagram of distances, P, Q, R, to find the angle
 of the resultant velocities, then a diagram of velocities)
4. Ship A is travelling South $\left(180^{\circ}\right)$ at $20 \mathrm{~km} / \mathrm{h}$.

Ship B is 5 km East $\left(90^{\circ}\right)$ of A and travels at $30 \mathrm{~km} / \mathrm{h}$.
To meet ship A in the shortest time:
(a) what bearing should B steer?
(b) how long does B take to meet A ? $\left(228^{\circ}, 13 \mathrm{~min}\right)$
5. A 'drone' aircraft is flying at a steady speed of $200 \mathrm{~km} / \mathrm{h} \mathrm{NE}\left(45^{\circ}\right)$.

An aircraft, flying at $300 \mathrm{~km} / \mathrm{h}$, initially 100 km due $\mathrm{S}\left(180^{\circ}\right)$ wants to intercept it in the shortest time.
Calculate
(a) the bearing the jet should fly,
(b) the time taken to meet up with the drone. $\left(28^{\circ}, 48 \mathrm{~min}\right)$

