Buoyancy – Tutorial

density of air = 1.29kg/m³ density of water = 1000kg/m³ g = 9.81N/kg

- 1. A piece of cork of volume 2.0m³ and density 250kg/m³ is kept submerged below the surface of water in a tank by means of a lightweight cable, diameter 5.0mm. Calculate:
 - (a) the tension in the cable, (14.7kN)
 - (b) the stress in the cable, $(7.5x10^8 Pa)$
- The airship R101 (which burst into flames when the hydrogen in it ignited) had a volume of 1.38x10⁵m³.

Calculate:

- (a) the upthrust on the ship in air, (1.75x10⁶N)
- (b) the weight of the gas in it if it is filled with
 - (i) hydrogen, density 0.088kg/m³, (1.19x10⁵N)
 - (ii) helium, density 0.176kg/m³ (2.38x10⁵N)
- (c) the differences between the upthrust and the weight of gas for these two gases. $(1.63 \times 10^6 N, 1.51 \times 10^6 N)$
- 3. A lump of concrete, volume 0.60m³, density 2300kg/m³, is lowered using a cable into a tank, mass 200kg, containing 5.0m³ of water, resting on a platform.

Complete the table:

position of concrete	above water	suspended in water	on base of tank (cable slack)
tension in cable/kN			
force on platform/kN			

(13.5, 7.65, 0; 51.0, 56.85, 64.5)

