Buoyancy - Tutorial

density of air $=1.29 \mathrm{~kg} / \mathrm{m}^{3}$ density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3} \quad g=9.81 \mathrm{~N} / \mathrm{kg}$

1. A piece of cork of volume $2.0 \mathrm{~m}^{3}$ and density $250 \mathrm{~kg} / \mathrm{m}^{3}$ is kept submerged below the surface of water in a tank by means of a lightweight cable, diameter 5.0 mm . Calculate:
(a) the tension in the cable, $(14.7 \mathrm{kN})$
(b) the stress in the cable, $\left(7.5 \times 10^{8} \mathrm{~Pa}\right)$

2. The airship R101 (which burst into flames when the hydrogen in it ignited) had a volume of $1.38 \times 10^{5} \mathrm{~m}^{3}$.

Calculate:
(a) the upthrust on the ship in air, $\left(1.75 \times 10^{6} \mathrm{~N}\right)$
(b) the weight of the gas in it if it is filled with
(i) hydrogen, density $0.088 \mathrm{~kg} / \mathrm{m}^{3}$, $\left(1.19 \times 10^{5} \mathrm{~N}\right)$
(ii) helium, density $0.176 \mathrm{~kg} / \mathrm{m}^{3}\left(2.38 \times 10^{5} \mathrm{~N}\right)$
(c) the differences between the upthrust and the weight of gas for these two gases. $\left(1.63 \times 10^{6} \mathrm{~N}, 1.51 \times 10^{6} \mathrm{~N}\right)$
3. A lump of concrete, volume $0.60 \mathrm{~m}^{3}$, density $2300 \mathrm{~kg} / \mathrm{m}^{3}$, is lowered using a cable into a tank, mass 200 kg , containing $5.0 \mathrm{~m}^{3}$ of water, resting on a platform.

Complete the table:

position of concrete	above water	suspended in water	on base of tank (cable slack)
tension in cable/kN			
force on platform/kN			

(13.5, 7.65, 0; 51.0, 56.85, 64.5)

