Centre of Gravity - Practice

1. A composite bar 1 m long is made from equal lengths of brass, mass 0.85 kg and copper, mass 0.89 kg . Calculate the position of the centre of gravity from
 the copper end. (0.494m)
2. A uniform plank 3.0 m long, mass 14 kg has a

A uniform metal plate 1.0 m long, mass 5 kg attached to
 end A.
(a) Calculate the distance of the centre of gravity from A. (1.24m)
(b) A second metal plate, half the length and half the mass is now attached to the other end. Calculate the new distance of the centre of gravity from A. (1.41m)
3. A stand is made from a cylindrical rod, length 0.90 m , mounted on a circular base diameter 0.20 m , which stands on the ground. mass of the rod $=0.50 \mathrm{~kg}$ mass of the base $=2.0 \mathrm{~kg}$
(a) Calculate the height above the ground of the centre of

4. A $4 m \times 2 m$ sheet of plywood, A, has a $1 m \times$ 1 m piece of the same plywood, B, fixed on top, 0.5 m from the edge, as shown.
Calculate the x and y coordinates of the centre of gravity of the combined sheet from corner O. (1.89m, 0.94m)
5. With engine removed, the mass of a car is 1100 kg , its centre of mass at C .
When the engine mass 220 kg is placed in the car at E , the centre of mass of the car is midway between the front wheels A and the rear wheels B.
Calculate:

(i) the distance b. (2.1m)
(ii) the height of the centre of gravity of car+engine above the ground. (0.475 m)

