Centre of Gravity – Further

- A drum to contain liquid is made from a circular base, diameter 0.20m and a cylinder, height 0.30m. mass of base = 100g mass of cylinder = 600g density of water = 1000kg/m³
 - (a) Calculate the height of the centre of gravity of the empty drum above the base. (0.129m)
 - (b) Calculate:
 - (i) the volume of the drum. $(9.4 \times 10^{-3} m^3)$
 - (ii) the mass of water to completely fill the drum (9.4kg)
 - (c) Calculate the height of the centre of gravity of the drum above the base, when it is:
 - (i) completely full to the top (0.149m)
 - (ii) half full (0.082m)
- 2. The L-shaped machine part consists of two uniform bars.

Bar 1 is tungsten alloy, density 14000kgm⁻³. Bar 2 is steel, density 7800kgm⁻³.

- (a) Calculate
 - (i) the mass of bar 1 (10.8kg)
 - (ii) the mass of bar 2 (5.99kg)
 - (iii) the x and y coordinates of the centre of gravity of the machine part.
 (97.2mm, 91.4mm)
- (b) Bar 1 is replaced with a bar the same size of aluminium alloy, density 2600kgm⁻³. Calculate the x coordinate of the centre of gravity of the machine part. (160mm)
- The diagram shows a tube fitted with a plug. The tube is made of aluminium, density 2700kgm⁻³. The plug is made of steel, density 7800kgm⁻³.

Calculate the x coordinate of the centre of gravity of the composite object. (120mm)

ND-2018-11