Centre of Gravity - Further

1. A drum to contain liquid is made from a circular base, diameter 0.20 m and a cylinder, height 0.30 m .
mass of base $=100 \mathrm{~g}$
mass of cylinder $=600 \mathrm{~g}$
density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
(a) Calculate the height of the centre of gravity of the empty drum above the base. (0.129m)
(b) Calculate:

(i) the volume of the drum. $\left(9.4 \times 10^{-3} \mathrm{~m}^{3}\right)$
(ii) the mass of water to completely fill the drum (9.4 kg)
(c) Calculate the height of the centre of gravity of the drum above the base, when it is:
(i) completely full to the top (0.149 m)
(ii) half full (0.082m)
2. The L-shaped machine part consists of two uniform bars.
Bar 1 is tungsten alloy, density $14000 \mathrm{kgm}^{-3}$.
Bar 2 is steel, density $7800 \mathrm{kgm}^{-3}$.
(a) Calculate
(i) the mass of bar $1(10.8 \mathrm{~kg})$
(ii) the mass of bar $2(5.99 \mathrm{~kg})$
(iii) the x and y coordinates of the centre of gravity of the machine part. ($97.2 \mathrm{~mm}, 91.4 \mathrm{~mm}$)
(b) Bar 1 is replaced with a bar the same size of aluminium alloy, density $2600 \mathrm{kgm}^{-3}$. Calculate the x coordinate of the centre of gravity of the machine part. (160mm)
3. The diagram shows a tube fitted with a plug. The tube is made of aluminium, density $2700 \mathrm{kgm}^{-3}$. The plug is made of steel, density $7800 \mathrm{kgm}^{-3}$.

Calculate the x coordinate of the centre of gravity of the composite object. (120mm)

Section $A-A$

