Forces at a point in equilibrium - Practice

1. A metal demolition ball, mass 600 kg , is suspended from a cable and pulled aside at an angle of 20°, by a horizontal force, F, using a rope.

Draw a closed vector triangle for the three forces acting on the ball. Calculate the size of the force F. $(2.14 \mathrm{kN})$

2. The string of a longbow is pulled back and held stationary with a force of 400 N , so that the string has an angle of 140° between the two parts.

Draw a closed vector triangle for the three forces acting at the point where the string is pulled. (hint: think about the direction of the forces and that they are symmetrical)
Calculate the tension in the string. (585N)

3. A load of cargo is hanging from a derrick (crane) on a harbour wall. The mass of the cargo is 500 kg .
(a) What is the direction of the force exerted on point A by (i) the strut $A C$? (ii) the tie $A B$?
(b) Draw a triangle of forces representing the forces acting at A and calculate:
(i) the magnitude of the force in the strut AC,
(ii) the magnitude of the force in the tie $A B$. ($5.66 \mathrm{kN}, 2.8 \mathrm{kN}$)

4. The four forces shown are in equilibrium.

Use the fact that the sum of x and y components are zero to calculate P and Q. (hint: use x-components first)
(28.6kN, 27.3kN)

5. A load of wood, mass 100 kg , is held still, ready to be lifted, by two ropes. AB makes an angle of 30° with the vertical, $A C$ makes an angle of 65° with the vertical.
Calculate the tensions, T_{AB} and T_{AC}, in the ropes. (892N, 492N)

