Forces at a point in equilibrium - Tutorial

1. A rigid rod is hinged to a vertical support and held at 50° to the horizontal by means of a cable when a mass weighing 250 N is suspended, as shown.
Consider the equilibrium of the forces acting at point A.

Calculate:
(i) the tension in the cable, $(177 N)$
(ii) the compression in the rod. (265 N)
2. The structural joint shown is in equilibrium.
$F_{\mathrm{A}}=1000 \mathrm{~N}, F_{\mathrm{D}}=5000 \mathrm{~N}$.
Calculate F_{B} and F_{C}.
(3680N, 2330N)

3. The four forces shown are in equilibrium.

Use the fact that the sum of x and y components are zero to calculate P and Q.
(hint: rotate the axes so that P and Q only act along one of the axes)
(5.8kN, 15.1kN)

4. These four forces are in equilibrium.
(a) Write the equations representing the fact that:
(i) the sum of the x-components is zero (i.e. components to left = components to right),
(i) the sum of the y-components is zero.
(b) Rearrange the equations to find expressions for: (i) $F \sin \theta$, (ii) $F \cos \theta$.
(c) Use the equations to calculate θ and F.
 ($67^{\circ}, 14 \mathrm{kN}$)
5. A 20kg mass is suspended from three cables, $A B, A C, A D$, as shown.
(a) Calculate the angles with the horizontal at B , C, D.
(b) The tension in cable $A C$ is 40 N . Calculate the tensions in cables $A B$ and $A D$.
(129N, 75N)

