Equilibrium of parallel forces - Practice

1. A force of 50 N is applied at right angles to the end of a spanner, 25 cm long, to tighten a nut.

What is the torque applied to the nut? (12.5Nm)

2. A torque wrench, length 80 cm , is being used to tighten cylinder head nuts to a torque of 90 Nm .

Calculate the minimum force that must be used.
(113N)

3. A cyclist pushes vertically down with a force of 500 N on the pedal crank, length 20 cm , which is at an angle of 25° to the horizontal.

Calculate the torque applied to the axle? (91Nm)

4. A child weighing 400 N sits 1.8 m from the pivot of a lightweight see-saw.
(a) Calculate how far from the pivot an adult weighing 600 N must sit in order to balance? (1.2m)
(b) Calculate the force on the pivot? (1000N)
5. A uniform plank, 5.0 m long, balances at a point 1.80 m from one end, when a mass of 20 kg is placed 0.60 m from the same end.
(a) Draw a free-body diagram of the plank.
(b) Calculate the mass of the plank. (34kg)

6. A car, mass 800 kg is 8 m from the end A of a bridge AB.
The bridge has mass $20 \times 10^{3} \mathrm{~kg}$ and length 30 m .
Calculate the forces on the supports at A and at B.

(104 kN, 100 kN)
7. A uniform diving board at a swimming pool has a weight of 150 N and length 4.0 m . It is held by two supports, A at one end and $B, 1.5 \mathrm{~m}$ from A.

(b) Calculate the force exerted by support A. (50N)
(c) A diver of mass 50 kg walks to the end of the board. Calculate:
(i) the force exerted by support A. $(868 \mathrm{~N})$
(ii) the force exerted by support B. $(1.51 \mathrm{kN})$

