Equilibrium of non-parallel forces - Practice

1. A lever is keyed to a 120 mm diameter shaft.

A force of 400 N is applied at right angles to the lever at a distance of 450 mm from the centre of the shaft, which does not rotate.

Calculate:
(a) the torque on the shaft, (180 Nm)
(b) the force applied to the key. (3000N)

2. The diagram shows a lever to turn a vertical force into a horizontal force.
Calculate the force F which will stop the lever turning about the pivot P.
(267N)

3. A uniform ladder, weight 150 N , length 4.0 m , leans with its upper end against a frictionless wall. Its lower end rests on the ground 1.0 m from the foot of the wall.
(a) Draw a free-body diagram of the ladder, showing the vertical and horizontal components of the force, F, from the ground on the ladder.
(b) Calculate:
(i) the push of the wall on the ladder. (19.4N)
(ii) the resultant force, F, from the ground and the angle it makes with the vertical. (151N, 7.4°)
4. An inn sign hangs at the centre of a bar, length 1.4 m , which is freely hinged to the wall. It is supported by a wire attached to the end at an angle of 30° to the horizontal, as shown. The total weight of the sign and bar is 300 N , acting in the centre.

Take moments about the hinge to find the tension in the wire. (300N)

