Forces - 1 - Tutorial

1. A barge is pulled by a rope along a canal as shown.

The rope applies a force of 800 N at an angle of 40° to the direction of travel.
The force of friction between the barge and the water is

Calculate the resultant force in the direction of travel acting on the barge. (512N)
2. A lunar lander approaching the surface of the Moon has a mass of 200 kg .

A rocket is fired horizontally, producing a thrust of 100 N .
The strength of gravity near the surface of the Moon is $1.6 \mathrm{~N} / \mathrm{kg}$.
Calculate:
(a) the weight of the lunar lander in this situation, (320N)
(b) the resultant force acting on the lunar lander. (335N, 73° below horizontal)
3. A concrete block is being lifted by a cable at 20° to the vertical, and a second horizontal cable is used, so that the resultant force is vertical. The tension in the first cable is 600 N .

Calculate the force F needed in the horizontal cable. (205N) (hint: the resultant force must be vertical, to support the block)

4. A ring bolt has two cables attached to it. One has a tension of 1500 N at 30° to the vertical, the other a force of 4000 N at 60° to the vertical.

Calculate the size and angle of the resultant. ($4.27 \mathrm{kN}, 39^{\circ}$ to right of vertical)

5. A 20 kg block of wood is placed on a slope as shown.

The block remains stationary.
Calculate the size and direction of the frictional force on the block. (hint: consider the components of the forces parallel to the slope)
(98N; upwards, parallel with slope)

