Forces - 2 - Tutorial

1. The two structural members, one in tension, one in compression, exert the forces shown on the joint O .

Calculate the magnitude of the resultant and the angle it makes with the positive x-axis.

2. A resultant vertical force, F, of 1750 N is needed to keep the balloon in place.
F is the resultant of the tensions in the two cables.
Calculate the tensions in $A B$ and $A C$, where:
$\theta_{1}=30^{\circ}$,
$\theta_{2}=40^{\circ}$
$(A B=930 N, A C=1200 N)$

3. Calculate the angle, θ, at which the 800 N force must be applied so that the resultant of the two forces, R, is 2000N. (51 ${ }^{\circ}$)

Under this condition, calculate the angle between the resultant, R, and the vertical. $\left(18^{\circ}\right)$

4. A spike needs to be removed from timber by applying a horizontal force. An obstruction A prevents direct access, so that two forces, one of 1.6 kN , and the other P are applied by cables, as shown. Calculate the magnitude of P needed to produce a resultant horizontal force, R. (2.15kN)

Calculate the value of R. (3.20kN)

