Pressure in Fluids - Practice

density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$

1. A tank is filled with oil, density $875 \mathrm{~kg} / \mathrm{m}^{3}$, to a depth of 7.0 m . On the bottom is a circular inspection hatch, diameter 0.75 m .
Calculate:
(i) the pressure on the hatch,
(ii) the force on the hatch. ($60 \mathrm{kPa}, 27 \mathrm{kN}$)
2. A research submarine has a 30 cm diameter window. The manufacturer says the window can withstand forces up to $1.2 \times 10^{6} \mathrm{~N}$. The pressure inside the submarine is maintained at atmospheric pressure.
Calculate the submarine's maximum safe depth in salt water, density $1025 \mathrm{~kg} / \mathrm{m}^{3}$. (1690m)
3. A simple lifting jack has a pump piston 12 mm diameter and a load piston 60 mm diameter, The load being lifted is 8.0 kN .
Calculate:
(i) the pressure in the oil,
(ii) the force needed on the pumping piston. (2.8MPa, 320N)
4. Water fills a tank, which has the profile shown. Sketch a graph of the gauge pressure moving along the base of the tank $A B C$.

5. When a U-tube manometer, containing oil of relative density 0.80 , is connected to a gas supply, the levels change as shown. The scale is in cm .

Calculate the gauge pressure of the gas supply. (314Pa)

