Pressure in Fluids - Tutorial

1. An aircraft has mass 350 tonnes, and the total area of its wings is $500 \mathrm{~m}^{2}$. Estimate the average difference in pressure there must be between the upper and lower surfaces of the wings. (6.8 kPa)
2. Two tanks, A and B, are joined by a pipe with a valve, 10 cm above the base of each tank. A has cross-sectional area $2.0 \mathrm{~m}^{2}$, B has cross-sectional area $1.0 \mathrm{~m}^{2}$.

The valve is closed and 1200 kg water is put into A.

(a) Calculate
(i) the depth of water in $\mathrm{A},(0.6 \mathrm{~m})$
(ii) the gauge pressure at the base of tank $\mathrm{A},(5.88 \mathrm{kPa})$
(iii) the pressure difference across the valve. (4.9kPa)
(b) The valve is opened until water stops flowing. Calculate:
(i) the depth of water in $\mathrm{A},(0.4 \mathrm{~m})$
(ii) the gauge pressure at the base of tank $\mathrm{A},(3.92 \mathrm{kPa})$
(iii) the pressure difference across the valve. ($O \mathrm{~Pa}$)
3. A large tank for liquid waste contains a depth of 0.60 m water, on top of which is a depth of 0.40 m oil, relative density 0.80 .

Sketch a graph of excess pressure against depth from the surface of the liquid.

4. The density of sea water at the surface of the ocean is $1025 \mathrm{~kg} / \mathrm{m}^{3}$. An increase in pressure of 2.1 GPa increases the density of sea water by 1%. Assume that sea water compresses uniformly with depth.
(a) Calculate the percentage increase in density at a depth of
(i) $100 \mathrm{~m},(0.0005 \%)$
(ii) 1000 m . (0.005\%)
(b) The depth of the deepest ocean is 11 km . Is the water significantly denser there than it is at the surface? (0.05\%)

