- The breaking stress of a particular steel is about 10⁹N/m². A wire of cross-sectional area 0.01mm² is made of this steel. Calculate the greatest force that the wire can withstand. (10N)
- 2. A certain type of steel has a breaking stress of 300MPa. Calculate the maximum mass that can be hung from a steel wire of diameter 0.20mm. *(0.96kg)*
- 3. Calculate the minimum diameter of an alloy cable, tensile strength 75MPa, needed to support a load of 15kN. *(16mm)*
- 4. Calculate the tensile stress in a suspension bridge supporting cable, diameter of 50mm, which pulls up on the roadway with a force of 4kN. *(2.0MPa)*
- 5. One end of a 2.0m length of copper wire, diameter 0.32mm, is attached to the ceiling. When a 1.0kg mass is hung from the bottom end, the wire extends elastically by 2.1mm.

Calculate:

- (a) the stress in the wire? (1.22x10⁸Pa)
- (b) the strain of the wire? $(1.05x10^{-3})$
- (c) the Young modulus of the copper? $(1.16x10^{11}Pa)$
- 6. A large crane has a steel lifting cable of diameter 36mm. The steel used has a Young modulus of 200GPa. When the crane is used to lift 20kN, the unstretched cable length is 25m. Calculate the extension of the cable. *(2.5mm)*
- 7. Use the graphs to complete the table with estimates of yield stress and ultimate tensile stress:

	steel	aluminium	400 350]			Ste	al	
yield strength (MPa)			300 [a] 250 [w] 200 states 150			A	luminium		/
ultimate tensile stress (MPa)			100 50 0				0.15		
L	1	1		0	0.05	0.1 St	0.15 train [-]	0.2	0.25

- 8. Tensile tests are carried out on a plastic specimen. The stress and strain results are below.
 - (a) Plot a graph of stress (y-axis) against strain (x-axis) on the axes provided.
 - (b) Measure the yield stress, using the graph. (45MPa)
 - (c) Calculate the Young modulus of the plastic, using the graph. (2.4GPa)

stress (MPa)	strain				
8.0	0.0032				
17.5	0.0073				
25.6	0.0111				
31.1	0.0129				
39.8	0.0163				
44.0	0.0184				
48.2	0.0209				
53.9	0.0260				
58.1	0.0331				
62.0	0.0429				
62.1	fracture				

