Potential Dividers

1. Three resistors are connected to a 12 V battery as shown.
(a) What is the equivalent resistance of the two 200Ω resistors in parallel?
(b) What is the voltage between A and B ?
(c) What is the voltage across the 300Ω resistor?
(100S, 3V, 9V)

2. The voltmeter in this circuit reads 6.2 V .
(a) What is the voltage across the $10 \mathrm{k} \Omega$ resistor?
(b) What is the resistance of the resistor R ?
(2.8V, 22k $\Omega)$

3. In this circuit, what is the ratio of:
(a) $\frac{I_{1}}{I_{2}}$
(b) $\frac{V_{1}}{V_{2}}$
$(2,2)$

4.

(a) What is the voltage between $\mathrm{A} \& \mathrm{C}$?
(b) What is the voltage between $\mathrm{B} \& \mathrm{D}$?
(c) What would a voltmeter read if connected between A \& B?
($8 \mathrm{~V}, 6 \mathrm{~V}, 2 \mathrm{~V}$)

5. Three resistors, of resistance $47 \Omega, 100 \Omega$ and 150Ω are connected to a battery as shown. A voltmeter connected across the battery reads 5.7 V .

Calculate
(a) the resistance of the circuit between B and C. (60 $)$
(b) the voltage between $\mathrm{A} \& \mathrm{~B}$ and between $\mathrm{B} \& \mathrm{C} .(2.5 \mathrm{~V}, 3.2 \mathrm{~V})$
(c) the current through the 47Ω resistor, the 100Ω resistor and the 150Ω resistor.
 ($53 \mathrm{~mA}, 32 \mathrm{~mA}, 21 \mathrm{~mA}$)
6. A series circuit is connected as shown in the diagram.
(a) What is the potential difference between A and B ?
(b) An additional resistor of 100Ω is connected between the 50Ω resistor and the cells. What is the voltage between A and B now?
(c) The additional 100Ω resistor is now connected in parallel with the first 100Ω resistor. What is the voltage between A and B now?

(4V, 2.4V, 3V)
7. The resistance of a light dependent resistor (LDR) decreases as the light intensity increases.

An LDR is connected in series with a $6.0 \mathrm{k} \Omega$ resistor as part of a light level sensor circuit.
(a) What is the output voltage V, when the resistance of the LDR is
(i) $6.0 \mathrm{k} \Omega$ (in the dark)
(ii) $3.0 \mathrm{k} \Omega$
(iii) $2.0 \mathrm{k} \Omega$ (in the light)
(4.5 V , 3.0V, 2.25 V)
(b) How would you alter the circuit so that the output V increases with increasing light level?

8. A catalogue states that, when a particular light emitting diode (LED) is used with a 5 V supply, a 270Ω resistor must be connected in series to limit the current to 10 mA . Calculate:
(i) the voltage across the resistor,
(ii) the voltage across the LED,
(iii) the resistance of the LED in these conditions.
(2.7V, 2.3V, 230 $)$
9. The resistance of a thermistor changes with temperature. The graph shows the characteristic of a thermistor.
(Note that the resistance scale is not linear - it is logarithmic.)
thermistor characteristic curve

This thermistor is used with a $10 \mathrm{k} \Omega$ resistor in a temperature sensor, in the circuit shown.
Calculate the output voltage $V_{\text {out }}$ at:
(i) $40^{\circ} \mathrm{C}$,
(ii) $80^{\circ} \mathrm{C}$.
(3.0V, 5.9V)

