Potential Dividers

- 1. Three resistors are connected to a 12V battery as shown.
 - (a) What is the equivalent resistance of the two 200Ω resistors in parallel?
 - (b) What is the voltage between A and B?
 - (c) What is the voltage across the 300Ω resistor?

(100Ω, 3V, 9V)

- 2. The voltmeter in this circuit reads 6.2V.
 - (a) What is the voltage across the $10k\Omega$ resistor?
 - (b) What is the resistance of the resistor R?

(2.8V, 22kΩ)

3. In this circuit, what is the ratio of:

(a)
$$\frac{I_1}{I_2}$$

(b) $\frac{V_1}{V_2}$

 $40\Omega \qquad \lor V_1$ $30\Omega \qquad 60\Omega \qquad \lor V_2$ $I_1 \qquad I_2 \qquad \lor$

- (a) What is the voltage between A & C?
- (b) What is the voltage between B & D?
- (c) What would a voltmeter read if connected between A & B?

(8V, 6V, 2V)

5. Three resistors, of resistance 47Ω , 100Ω and 150Ω are connected to a battery as shown. A voltmeter connected across the battery reads 5.7V.

Calculate

- (a) the resistance of the circuit between B and C. (60Ω)
- (b) the voltage between A & B and between B & C. (2.5V, 3.2V)
- (c) the current through the 47Ω resistor, the 100Ω resistor and the 150Ω resistor. (53mA, 32mA, 21mA)
- 6. A series circuit is connected as shown in the diagram.
 - (a) What is the potential difference between A and B?
 - (b) An additional resistor of 100Ω is connected between the 50 Ω resistor and the cells. What is the voltage between A and B now?
 - (c) The additional 100Ω resistor is now connected in parallel with the first 100Ω resistor. What is the voltage between A and B now?

(4V, 2.4V, 3V)

7. The resistance of a light dependent resistor (LDR) decreases as the light intensity increases.

An LDR is connected in series with a $6.0k\Omega$ resistor as part of a light level sensor circuit.

- (a) What is the output voltage *V*, when the resistance of the LDR is
 - (i) $6.0k\Omega$ (in the dark)
 - (ii) $3.0k\Omega$
 - (iii) $2.0k\Omega$ (in the light)
- (4.5V, 3.0V, 2.25V)
- (b) How would you alter the circuit so that the output *V* increases with increasing light level?

- 8. A catalogue states that, when a particular light emitting diode (LED) is used with a 5V supply, a 270Ω resistor must be connected in series to limit the current to 10mA. Calculate:
 - (i) the voltage across the resistor,
 - (ii) the voltage across the LED,
 - (iii) the resistance of the LED in these conditions.

(2.7V, 2.3V, 230Ω)

9. The resistance of a **thermistor** changes with temperature. The graph shows the characteristic of a thermistor.

(Note that the resistance scale is not linear – it is logarithmic.)

thermistor characteristic curve

This thermistor is used with a $10k\Omega$ resistor in a temperature sensor, in the circuit shown.

Calculate the output voltage V_{out} at:

- (i) 40°C,
- (ii) 80°C.

(3.0V, 5.9V)