Resistance

1. Calculate the resistance of:
(i) a 230 V mains bulb which takes a current of 0.25 A ,
(ii) a torch bulb that draws 0.25 A from a 12 V supply,
(iii) an immersion heater that draws 10 A from a 240 V supply. $(920 \Omega, 48 \Omega, 24 \Omega$)
2. Calculate:
(i) the current through a $10 \mathrm{k} \Omega$ resistor connected to 240 V ,
(ii) the voltage across a $47 \mathrm{k} \Omega$ resistor carrying a current of $20 \mu \mathrm{~A}(24 \mathrm{~m}, 0.94 \mathrm{~V})$
3. The current through a 12 V lamp was monitored using a data logger from the moment switch S was closed. The resulting graph is shown below. The current settles to about 4A, but, for a short time after S is closed is many times greater. Explain why this is.

4. The current through a lamp was measured for different values of voltage. The results are shown on the graph.
(a) What is the resistance of the lamp:
(i) when connected to 1.0 V ?
(ii) when connected to 2.0 V ?
(iii) when a current of 0.20 A flows through it? $(7.6 \Omega, 10.5 \Omega$, 11 Ω)
(b) Add a line to the graph to show the result you would get with a constant, fixed resistor of 10Ω.

(e) The lamp and a 10Ω resistor are connected in series to a 1.5 V power supply. Use the graph to find the current which flows from the supply. (0.10A)
5. The graph shows the $I-V$ characteristic of a particular type of diode.

(a) What is the voltage across the diode when a current of 1.5 A flows? $(0.59 \mathrm{~V})$
(b) What is the effective resistance of the diode:
(i) when a current of 1.5 A flows?
(ii) when a current of 3.0 A flows? $(0.39 \Omega, 0.21 \Omega)$
6. The $I-V$ characteristics of two electrical components A and B are shown below.

(a) What is the resistance of each component with a voltage of 3.0 V across it?
($12 \Omega, 7.5 \Omega$)
(b) Suggest what each component could be.

The two components are connected in series across a variable supply. A voltmeter measures the voltage across A.
(c) The voltmeter reads 3.0 V What is
(i) the current through A ?
(ii) the voltage being provided by the supply? ($0.25 \mathrm{~A} ; 4.5 \mathrm{~V}$)
(d) The supply voltage is increased to 6.0 V . What is the current from the supply? (0.32A)

