1. Without detailed calculation, state the resistance of each of these combinations of resistors.

2. What is the resultant resistance of each of the following combinations of resistors? (120 Ω , 400 Ω , 55 Ω , 100 Ω , 167 Ω , 133 Ω)

- 3. Resistors of 100Ω and 150Ω are joined, first in series, then in parallel. What is the total resistance:
 - (i) in series? (250Ω)
 - (ii) in parallel? (60 Ω)

- 4. A connecting lead used in a laboratory consists of 55 strands of wire, each of resistance 2.3 Ω . What is the resistance of the wire? (0.042 Ω)
- 5. What is the total resistance when:
 - (i) two 1k Ω resistors are connected in parallel? (500 Ω)
 - (ii) ten 1k Ω resistors are connected in parallel? (100 Ω)
- 6. Four resistors, two 100Ω and two 200Ω , are arranged in a square as shown.

What resistance would be measured between the points:

- (i) AB? (83Ω)
- (ii) AC? (133Ω)
- (iii) AD? (133Ω)
- 7. You are given one 200Ω resistor and two 100Ω resistors. Draw diagrams to show how you would connect any combination of them to give a combined resistance of:
 - (i) 400Ω,
 - (ii) 250Ω,
 - (iii) 167Ω.
- 8. Resistors are manufactured only in certain values. In the laboratory there are resistors with the values $1k\Omega$, $2.2k\Omega$, $3.3k\Omega$, $4.7k\Omega$, $5.6k\Omega$ and $6.8k\Omega$.

How can you combine two or more of these resistors when you need a resistance of:

- (i) 3.0kΩ,
- (ii) 9.0kΩ,
- (iii) 500Ω,
- (iv) $5.0k\Omega$,
- (v) $4.0k\Omega$?
- 9. (a) What is the smallest number of resistors you need to make a resistance of:
 - (i) 5Ω , given a supply of 3Ω resistors? (4)
 - (ii) 7Ω , given a supply of 4Ω resistors? (5)
 - (b) Draw a diagram, in each case, to show how you would connect them.